Towards real-time intravascular endoscopic magnetic resonance imaging.

نویسندگان

  • Shashank Sathyanarayana
  • Michael Schär
  • Dara L Kraitchman
  • Paul A Bottomley
چکیده

Fast, minimally invasive, high-resolution intravascular imaging is essential for identifying vascular pathological features and for developing novel diagnostic tools and treatments. Intravascular magnetic resonance imaging (MRI) with active internal probes offers high sensitivity to pathological features without ionizing radiation or the limited luminal views of conventional X-rays, but has been unable to provide a high-speed, high-resolution, endoscopic view. Herein, real-time MRI endoscopy is introduced for performing MRI from a viewpoint intrinsically locked to a miniature active, internal transmitter-receiver in a clinical 3.0-T MRI scanner. Real-time MRI endoscopy at up to 2 frames/s depicts vascular wall morphological features, atherosclerosis, and calcification at 80 to 300 μm resolution during probe advancement through diseased human iliac artery specimens and atherosclerotic rabbit aortas in vivo. MRI endoscopy offers the potential for fast, minimally invasive, transluminal, high-resolution imaging of vascular disease on a common clinical platform suitable for evaluating and targeting atherosclerosis in both experimental and clinical settings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo real-time intravascular MRI.

PURPOSE The Magnetic resonance imaging (MRI) is an emerging technology for catheter-based imaging and interventions. Real-time MRI is a promising methodfor overcoming catheter and physiologic motion for intravascular imaging. METHODS All imaging was performed on a 1.5 T Signa MRI scanner with high-speed gradients. Multiple catheter coils were designed and constructed, including low-profile, s...

متن کامل

ANALYTICAL STUDY OF EFFECT OF BILAYER INORGANIC AND ORGANIC COATING AROUND THE IRON OXIDE NANOPARTICLES ON MAGNETIC RESONANCE IMAGING CONTRAST

Background & Aims: In recent years, iron oxide nanoparticles have been used in contrast-enhanced magnetic resonance imaging for diagnosing a wide range of diseases. In order to provide biocompatibility and prevent the toxicity of the nanoparticles, using organic or inorganic coating around these nanoparticles is important for their application. The aim of this study is to investigate the effect...

متن کامل

Real-time black-blood MRI using spatial presaturation.

A real-time interactive black-blood imaging system is described. Rapid blood suppression is achieved by exciting and dephasing slabs outside the imaging slice before each imaging excitation. Sharp-profiled radio frequency saturation pulses placed close to the imaging slice provide good blood suppression, even in views containing slow through-plane flow. In vivo results indicate that this techni...

متن کامل

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

Magnetic resonance image-guided trans-septal puncture in a swine heart.

PURPOSE To test the feasibility of performing magnetic resonance (MR)-guided trans-septal punctures in the swine heart. MATERIALS AND METHODS All procedures were performed in a 1.5-T MR scanner. A novel, active MR intravascular needle system was utilized for needle tracking and septal punctures. Trans-septal punctures were performed in five swine using electrocardiogram (ECG)-gated high resol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • JACC. Cardiovascular imaging

دوره 3 11  شماره 

صفحات  -

تاریخ انتشار 2010